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INTRODUCTION

This paper provides a review of what is known as weak
value measurement theory, which arose out of the time-
symmetric approach to quantum mechanics [1–4]. Exper-
iments using weak values will also be discussed as these
have provided a very new perspective for describing mea-
surement and its effects in quantum mechanics [5], as
well as high-precision measurements that have increased
state-of-the-art precision technology by orders of magni-
tude [6]. Comparison to techniques used in the field of
chemisty in spectroscopy will be provided to explore their
similarities with weak values [7].

WEAK VALUE MEASUREMENT

The theory for weak values was first introduced in an
attempt to develop a time-symmetric theory for quantum
mechanics by Aharonov, Bergmann, and Lebowitz (ABL)
in 1964 [1]. Prior to their theory, measurement in quan-
tum mechanics was taught using the ‘von Neumann’ type
measurements, where after a measurement the quantum
state ‘collapses’ into one of the eigenstates and remains in
this eigenstate. This is not time-symmetric, so ABL con-
sidered ‘evolving’ a quantum initial state |ψi〉 forward in
time up to a measurement Â, while simultaneously evolv-
ing a quantum ‘final’ state 〈ψf | backward in time back to
the measurement. This provided a time-symmetric two-
state vector formalism for quantum mechanics, where a
weak value is defined [8]:

Aw ≡
〈ψf | Â |ψi〉
〈ψf | ψi〉

. (1)

The denominator is for normalization. This ‘weak value’
was claimed by AAV to be the result of such symmetric
measurement.

Weak Value Measurement

For over two decades, the time-symmetric approach by
ABL seemed to be just a new theory to describe quan-
tum mechanics. However in 1988, Aharonov, Albert, and

Vaidman (AAV) applied the time-symmetric two-vector
approach to an experiment that could be conducted in
the lab [2]. Their title, “How the result of a measurement
of a component of the spin of a spin-1/2 particle can turn
out to be 100” was peculiar enough that it has since been
a source of confusion. The paper suggested a modified
Stern-Gerlach experiment (see Figure 1) where electrons
with definite spin in one orientation (they called this ‘pre-
selection’ of the electron state, corresponding to ψi in
equation (1)), passes through a weak magnetic field (a
‘weak ’ measurement) to measure the spin z component.
Then, the electrons pass through a strong magnetic field
oriented so that the spin x was measured. This latter
measurement was called a ‘post-selection’, corresponding
to ψf in equation (1). Their theory predicted that for
nearly orthogonal pre- and post-selections, there would
be a large deflection of the electrons as if the spin had a
value of 100 or more!

The AAV theory as originally written had many errors,
and its interpretations have had confusing conclusions
(such as complex weak values, negative probabilities, su-
perluminal propagation, and time travel) that are still
highly debated today [6, 8]. Duck, Stevenson, and Su-
darshan (DSS) provided a nice paper a year after, to cor-
rectly state the theory, while confirming the conclusions
of AAV, namely that a measurement value can lie out-
side of the eigenvalue spectrum with the proposed weak
value procedure [3]. They also provided corrections to
the regions of validity for the AAV theory, one of which
was the limit for the weak value itself:

Aw � ∆p, (2)

where p is the conjugate momentum for the measuring
‘pointer,’ its deflection/deviation being what is registered
for the measurement Â. This shows that Aw ' ∆p is
when the AAV theory breaks down, which is also a good
approximation for the maximum value for Aw.

Optical Analogue of the Weak Value Spin-1/2
Experiment

DSS went further to provide an equivalent experiment
to the spin-1/2 Stern-Gerlach experiment proposed by
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FIG. 1. Spin-1/2 experiment proposed by AAV (Adapted
from [6]). (top) Von Neumann (‘strong’) measurement.
(middle) ‘Weak’ measurement. (bottom) Pre- and post-
selections of the spin state. (right) Corresponding proba-
bility distributions of the wavefunctions of the two separated
states. Top shows that the two distinct eigenvalues are clearly
separated. Middle shows they are weakly separated (i.e., sep-
aration is smaller than the spread). Bottom shows the de-
structive interference generated from pre- and post-selections,
with the resulting distribution being shifted further (centered
at Aw, the ‘weak value’), albeit with a smaller amplitude.
The shift lies within the original spread.

AAV. They proposed a polarized light experiment in
which a coherent beam, with Gaussian distribution, is
pre-selected in a linearly polarized state, then passes
through a birefringent crystal that produces a small dis-
placement between the o ray and the e ray. The bire-
fringent crystal acts as a weak measurement because the
separation is small. The beam then is post-selected with
a polarizer into a linearly polarized state that is nearly
orthogonal to the initial input state, thus providing a
large shift in the center of the final Gaussian beam, cor-
responding to the weak value given in equation (1). The
signal is decreased, since the measured intensity I of the
final beam follows:

I ∝ λ2δ, (3)

where λ is the coupling strength between the birefringent
medium and the polarized light, and 1/(2δ) is the spatial
width of the initial Gaussian beam. So for weak mea-
surements (small λ coupling), the signal is quite small,

which is the ‘price’ of the large weak value enhancement.
However, by repeating the experiment many times, the
deflection can be measured to any desired accuracy. In
fact, weak value experiments require the experiments be-
ing repeated, thus providing an average over repeated
measurements, rather than a single measurement, pre-
cisely because the measurements are weak [6].

The experiment proposed by DSS was conducted by
Ritchie et al. in 1991, which was the first ‘weak value’
measurement [9] (See Figure 2). The beam separation
from the birefringent plate used was calculated (from
Snell’s law and geometry) to be a = 0.64µm, without any
post-selection. For nearly orthogonal linear polarizers P1
and P2 (α+π/2 + 2.2×10−2 = β), they showed that the
resulting intensity profile was shifted by Aw = 12µm, 19
times the actual displacement a, albeit with ∼ 10−3 the
original intensity.

FIG. 2. Experimental setup for Ritchie et al. [9] He-Ne laser
is collimated, focused, and polarized at an angle α relative to
the x axis by telescope T, lens L1, and polarizer P1, respec-
tively. Birefringent crystalline quartz plate Q with optic axis
(OA) aligned along the x axis is located near the laser beam
focus. Q spatially separates the ordinary and extraordinary
polarization components by a distance small compared to w0,
the focused-beam waist. Polarizer P2, with axis at an angle β
with the x axis, post-selects final state. Lens L2 expands im-
age onto photodetector D, which is scanned in the y-direction,
measuring intensity I(y). (From [9]) Bottom-right: Displace-
ment of o and e rays after propagation through Q (From [3]).

Understanding Weak Values Intuitively

The optical weak value experiment by DSS and Ritchie
et al. used coherent beams with Gaussian distributions to
describe the theory. All that is required is for the beam to
be coherent across its width. Thus, the experiment and
theory are classical and do not require quantum mechan-
ics, nor the weak value measurement formalism of AAV,
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although DSS’s and Ritchie’s works used the AAV for-
malism [5]. This is the same for the spin-1/2 experiment
by AAV, except that the spin of the electrons stems from
a quantum mechanical description of matter only. Classi-
cally, we can understand the Aw shift in the measurement
value using interference. Both pre- and post-selecting po-
larizers, the birefringent crystal were described by DSS
with matrix algebra for the Guassian light beam, using
well-known classical formulas in optics. This gives the
final, combined field as a function of the transverse di-
rection y:

Ef (y) = cosβ cosα exp[−δ2(y − a1)2]

+ sinβ sinα exp[−δ2(y − a2)2], (4)

where a1 and a2 are the two displacements of the o ray
and e ray due to the birefringent crystal, which splits the
light beam. We see from equation (4) that the final inten-
sity measurement can be written as a sum of two Gaus-
sians each centered about a1 and a2. This is what one
would expect. These two displacements are the analogue
of the two eigenvalues for the spin-1/2 state experiment.

Let us describe the experiment in slightly more detail.
Because of the ‘weak’ measurement, the spreads (∼ δ) of
both Gaussian distributions in equation (4) are large and
overlap (See right-side of Figure 1). The key to the en-
hancement is when the post-selection is made to obtain
a final state that is nearly orthogonal to the initial state.
Then, the two Gaussian beams interefere destructively.
We can see this from equation (4), where cosβ → − sinα
and cosα → sinβ (for small α > 0 and β ≈ α + π/2),
creating a negative sign difference between the two Gaus-
sian parts. Physically the destructive interference occurs
because we have selectively removed most of the signal
by our orthogonal post-selection. The result is that the
final field has a distribution of a single Gaussian beam
centered about the weak value Aw as given by AAV. This
is shown in Figure 3.

NOVEL QUANTUM WEAK VALUE
EXPERIMENTS

For over twenty years since the introduction of the the-
ory for weak value measurements, and the initial demon-
stration of an enhancement effect by Ritchie et al., weak
values was not given wide attention. This all changed
in 2008 when Hosten and Kwiat used the AAV the-
ory to experimentally demonstrate a ≈ 104 enhance-
ment, which allowed ∼ 1Å displacement sensitivity. This
was the beginning of an explosion of interest in weak
value measurments, with practical application to pre-
cision measurement enhancements, as well as measure-
ments of wavefunctions and quantum tests that were pre-
viously thought impossible [4–6, 10].

FIG. 3. The final state for nearly orthogonal pre- and post-
selected weak value measurements. In momentum space (as
opposed to the position space for the optical experiment).
ε is proportional to how close the (pre-selected) initial and
(post-selected) final states are orthogonal (e.g. ε ∼ |β − (α+
π/2)|). Which side the mean is located, i.e. whether Aw is
positive or negative, depends on the sign of ε. (a) Final field
for the optical DSS experiment, or the measuring device final
state for the AAV spin-1/2 experiment. (b) Final intensity,
or measuring device probability distribution. (From [3])

Measuring 1Å from the Spin Hall Effect of Light

In 2008, Hosten and Kwiat measured the ‘spin Hall
effect of light’ (SHEL) for the first time [11]. The Hall
effect is where an applied field on transport particles re-
sults in a motion perpendicular to the field. The spin Hall
effect is due to the interaction of an applied electric field
with a spin-polarized current that flows transversely [5].
SHEL is an optical analogue of this effect that was pro-
posed by Onoda et al. [12], and Bliokh and Bliokh [13],
where the polarization states of the photons interact with
the refractive index gradient of a material. The theory
was controversial for 50 years [14], even up until the time
of Hosten and Kwiat’s experimental verification of the
completed theory by Bliokh and Bliokh [15, 16] .

In SHEL, when a beam of light enters a material, at
the interface, the beam is displaced. For example, when
a horizontally polarized light beam enters a material, due
to the change in refractive index, the left-circularly polar-
ized (LCP) and right-circularly polarized (RCP) compo-
nents (recall linear polarization is a linear combination
of LCP and RCP light) experience opposite transverse
displacements (not deflections).

The effect of SHEL is quite small, such that this dis-
placement is δ ∼ 1Å from SHEL alone. To observe
this small effect, Hosten and Kwiat used pre- and post-
selections of nearly orthogonal polarization states, be-
fore and after the index of refraction material, respec-
tively. The front interface causes the SHEL displacement



4

which is smaller than the transverse spread of the enter-
ing beam, constituting a weak measurement (The second
surface was adjusted to be normally incident to the ex-
iting beam to eliminate a secondary SHEL effect). This
resulted in an amplification of the small SHEL displace-
ment by nearly 104× (‘Aw’ in Figure 4). Their experi-
mental setup is shown in Figure 4.

FIG. 4. (Top-left) In SHEL, a beam of light separates into
two components that are discplaced at the interface, when
entering a material with a different index of refraction than
the previous medium. (Top-right) Gaussian intensity profile
of incident beam (top). When weak measurement occurs, the
two slightly displaced (by δ) profiles destructively interfere to
give a much smaller profile centered about Awδ. (From [5]).
(Bottom) Hosten and Kwiat experimental setup. VAP
(Variable Angle Prism) generates the weak displacement for
SHEL. P1, P2 are nearly orthogonal polarizers, L1, L2 are
lenses, HWP is a half-wave plate to adjust incident intensity,
and PS is a split photodiode position sensor. (From [11])

Detecting 400 frad Angle Amplification

Shortly after Hosten and Kwiat’s 2008 landmark ex-
periment, Dixon, Starling, Jordan, and Howell demon-
strated an ultrasensitive beam deflection measurement
using interferometers modeled after a weak value mea-
surement scheme [17]. Earlier, the University of
Rochester group had shown the usefulness of weak val-
ues by demonstrating a sensitive zero or π cross-phase
modulation jump from an optical setup combined with
Cs atoms, using weak value measurements [18]. How-
ever, this next measurement scheme brought much atten-
tion due to the high degree of sensitivity possible from
the AAV theory, as they had measured 400 femtoradi-
ans, which is literally the breadth of a human hair over
the distance from the earth to the moon [4, 6, 19]. To
be accurate, this experiment can also be described on
completely classical grounds, but it was inspired by the
quantum mechanical AAV theory [20].

The experiment by Dixon et al. was an implementa-
tion of the spin-1/2 experiment by AAV using a Sagnac
interferometer with polarized coherent beams (See Fig-
ure 5). The polarizing beam splitter sends in a linearly
polarized beam, which is separated into two paths (ro-
tating clock-wise or counter-clockwise) by the subsequent
beamsplitter. For a perfectly symmetric Sagnac interfer-
ometer (without the piezo-driven motor, the half wave-
plate (HWP), or Soleil-Babinet compensator (SBC)), the
output towards the left (and into the CCD or quadrant
detector) would be the ‘dark port’ where no light will
exit, due to interference (the ‘bright port’ is where all
the beam exits, and is where the beam initially enters).

FIG. 5. Experimental setup for Dixon et al.’s weak value
measurement of 400 frad (From [19]).

Rotation of the piezo-driven mirror is controlled so as
to generate a separation and a deflection for the exiting
beam. Thus the beam will exit to the left or right of
the optical axis at the exiting port of the beamsplitter,
depending on which path the beam traveled in the inter-
ferometer. The deflection is measured by a split detector,
and gives information about the ‘which-path’ of the sys-
tem (clock-wise or counter-clockwise). Since small deflec-
tions are made with the piezo motor, this constitutes a
weak measurement. The deflection angle was calibrated
by measuring the deflection without the beam splitter
in the interferometer. By measuring the deflection angle
with the beam splitter, and hence the Sagnac interfero-
metric setup, and comparing it to the angle without the
beam splitter, an amplification factor was measured. The
amplification factor used for the final result was 86.

The combination of the HWP and the SBC gener-
ates an asymmetry so that each path obtains a relative
phase shift. The HWP changes the horizontal polariza-
tion to vertical, and vice versa. The SBC provides a
polarization-dependent phase shift φ, which can be ad-
justed. This allows a continual tuning of the phases of
the two which-path beams so that the dark port can be-
come the bright port, or any degree of it. The initial
pre-selected state is then a linear combination of the two
which-path states with relative phases due to the SBC +
HWP combination. The final, post-selected state is that
linear combination of which-path states that is orthogo-
nal to the initial state for φ = 0. By only detecting at
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the original dark port, this post-selection is automatically
made. To maximize the weak value ‘amplification’, φ is
adjusted to be as close to zero, so that the pre- and post-
selected states are nearly orthogonal. It appears that the
ideal SBC angle φ was 11.5◦, limited by the small amount
of light exiting the dark port.

The result of the experiment was a 400± 200 frad de-
flection measurement, corresponding to an indirect mea-
surement of 14± 7 fm linear travel of the piezo actuator.
This was achieved with weak value measurement and a
lock-in amplifier. The amplification factor was beam size
dependent, it being larger for larger beam sizes. The
beam size at the detector was σ = 1240 ± 50 µm. The
post-selection power was 63 µW from an input power of
3.2 mW, corresponding to a 2% reduction, thus showing
the expected diminution of the final signal due to the
destructive interference of weak value measurements.

A subsequent study by the same authors [21] provided
the first careful accounting of the signal-to-noise ratio
(SNR) of weak value amplification (WVA) [22]. They
showed that the SNR for WVA was larger than standard
detection schemes that produce the same beam size on
the detector. However, the SNR for WVA was the same
order as when a lens is used to focus the beam onto a split
detector. However, there are significant advantages for
WVA. They are that the technical noise is reduced by the
square root of the post-selection probability (sin2(φ/2)
for Ref. 17), low power detectors can be used with high
power lasers, and the ulitimate limit can be achieved with
a large beam radius. Compared to the deflection without
WVA or a focusing lens, a factor of 54 improvement in
SNR was produced experimentally.

Other Significant Weak Value Experiments

There have been many more experiments utilizing
the AAV theory since Hosten and Kwiat’s paper for
SHEL. Lundeen and Steinberg used weak values to ‘re-
solve’ Hardy’s paradox, where electrons and positrons go
through two interferometers that overlap [23] (See Fig-
ure 6). The paradox is that both the electrons and/or
the positrons will come out of the dark port sometimes,
due to their interference from the overlapping region,
but when the two particles overlap, they should have
annihilated each other! Using simultaneous weak mea-
surements with an optical analogue experiment, Lundeen
and Steinberg showed that the probability of finding the
electron in its overlapping path and the positron in the
nonoverlapping path, and vice versa, are both 100%, thus
‘resolving’ the pardox. However, this totals 200%, but
this is also not a problem since the probability of finding
both particles in the nonoverlapping paths is -100%, al-
lowing the net probabiliy to be exactly 100%. The price
to pay is to accept negative probabilities [6].

Perhaps one of the most fascinating experiments us-

FIG. 6. Hardy’s paradox (From [6]).

ing weak values came from two groups in June 2011,
where single photon wavefunctions were directly mea-
sured [24, 25] (See Figure 7). The trick was to weakly
measure the momentum or position and strongly mea-
sure the other conjugate variable. Of course this doesn’t
violate our standard notion of quantum mechanical mea-
surements and preserves the Heisenberg uncertainty prin-
ciple between two conjugate observables, because the fi-
nal trajectories are the results of averaging many mea-
surements. Nonetheless, these experiments have made
many physicists rethink our understanding of quantum
mechanical wavefunctions [10].

Finally, in 2012, a weak value experiment by the Stein-
berg group even went so far as to question one of the fun-
damental principles of quantum mechanics- the Heisen-
berg uncertainty principle [26]. As originally formulated
by Heisenberg himself, the uncertainty principle stated
that a measurement of the position of a particle by a
photon imparts a momentum disturbance to the particle
from the photon-particle scattering event, and is larger
for more precise measurements (smaller photon wave-
lengths). This original formulation (called measurement-
disturbance relationship (MDR) by [26]) is not the same
as what is proved mathematically in modern textbooks.
The former was shown to be less general and mathemat-
ically incorrect. The modern version, commonly referred
to as the Heisenberg uncertainty principle (HUP) refers
to the uncertainties intrinsic in the quantum state, not to
the precision and disturbance relationship. For arbitrary

observables Â and B̂, where ∆Â =
√
<Â2> −<Â>2,

HUP is written as:

∆Â∆B̂ ≥ 1
2

∣∣∣<[Â, B̂]>
∣∣∣ . (5)

The original Heisenberg’s measurement-disturbance rela-
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FIG. 7. Phase-space measurement of single photons through a two-slit setup by Steinberg and colleagues [25]. (From [6]).

tionship (MDR) is written as:

ε(Â)η(B̂) ≥ 1
2

∣∣∣<[Â, B̂]>
∣∣∣ , (6)

where ε(Â) is the measurement precision, and η(B̂) is
the induced disturbance from the measurement. Ozawa
proved a corrected relationship that includes both the
standard deviation and the precision + disturbance com-
bination [27]:

ε(Â)η(B̂) + ε(Â)∆B̂ + η(B̂)∆Â ≥ 1
2

∣∣∣<[Â, B̂]>
∣∣∣ , (7)

The experimental setup by the Steinberg group to mea-
sure a single photon is shown in Figure 8. The X̂ and
Ẑ polarization observables were used, yielding the right-
hand side (RHS) of equations (6) and (7) to be | <Ŷ> |.
The system (the polarization of a single photon) was
prepared to maximize RHS so that the MDR inequality
(equation (6)) could be violated. A probe interacts with
the system weakly, then is strongly measured (shaded
area of Figure 8 (a)). The system and probe become
entangled through this interaction (‘measurement appa-
ratus’ (MA)), disturbing the system. The system is also
weakly measured prior to the MA. The precision ε(Â)
was defined to be the root mean square (RMS) difference
between the value of Â on the system before the inter-
action, and the value of it read out on the probe. The
disturbance η(B̂) was then defined to be the RMS dif-
ference between the value of B̂ on the system before and
after the MA.

The results of the experiment are shown in Figure 9.
The bottom plot shows that the MDR relation is violated,
while the Ozawa relationship holds. Thus, Rozema and
the Steinberg group showed experimentally, what was
previously thought impossible to demonstrate [26], that
the original Heisenberg formulation of the uncertainty
principle is incorrect.

FIG. 8. Weak measurement experiment testing the Heisen-
berg uncertainty principle as originally proposed by Lund and
Wiseman [28], and conducted by Rozema et al. (Steinberg
group) [26] (a) General method to measure precision and dis-
turbance, where a weak measurement is made before the mea-
surement apparatus, followed by a strong measurement. (b)
Quantum circuit application for a qubit system. (From [26]).

WEAK SIGNAL AMPLIFICATION
TECHNIQUES IN CHEMISTRY

In the field of chemistry, chiral molecules are molecules
with non-superimposable mirror images and are often
studied because probing the two left-handed and right-
handed enantiomers provide three-dimensional stereo-
scopic information. In addition, producing the right
enantiomer is important for pharmaceutical manufactur-
ing since drugs with the wrong chirality can be poisonous.

Left- or right-handed enantiomers have different in-
dices of refraction for left- or right-circularly polarized
(LCP or RCP) light. Thus, when a beam traverses a
chiral medium, its polarization rotates, or its ellipticity
changes, due to the difference in the real part and imag-
inary part of the index of refraction, respectively. The
former is called optical rotatory dispersion (ORD), and
the latter is called circular Dichroism (CD). These quan-
tities are directly proportional to the differential index of
refraction (real part) and the differential absorption be-
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FIG. 9. Experimental results of testing the Heisenberg uncer-
tainty principle, by Rozema et al. using X̂, Ẑ polarizations of
light [26]. (a) Precision and induced disturbance. (b) Plot of
left-hand side of the Heisenberg and Ozawa relations in equa-
tions (6) and (7). respectively. Right-hand side is | <Ŷ > |
polarization, and was measured to be 0.80±0.02. Heisenberg’s
MDR quantity lies below | <Ŷ> |, a clear violation of the orig-
inal Heisenberg uncertainty principle in equation (6). How-
ever, Ozawa’s relation is shown to still hold true. (From [26]).

tween LCP and RCP light, respectively.

To measure the ability to selectively excite one enan-
tiomer over the other (called optical enantioselectivity),
thereby quantifying the chirality of a sample, a quantity
called the dissymmetry factor is used. It is defined as:

g =
A+ −A−

(A+ +A−)/2
, (8)

where A+, A− are the absorption rates for ‘left-handed’
(+) and ‘right-handed’ (−) fields, respectively. When
LCP and RCP lights are used, we denote this as g →
gCPL. For such case, the dissymmetry factor defined in
equation (8) is the CD divided by the average absorption,
and is a proper criterion for determining whether the CD
is measurable for a particular absorption band, given the
available instrumental sensitivity [29]. The dissymmetry
factor is typically quite small, with a range of 10−6−10−2,
the lower end corresponding to vibrational spectrum, and
the upper end for electronic spectrum. Many in the field
of chemistry have thus attempted to measure or enhance
this small signal, contributing to novel methods for doing
just that. Here we discuss two methods.

Enhanced Optical Enantioselectivity- ‘Superchiral’
Fields

In 2010 and 2011, Tang and Cohen proposed and
demonstrated one method to enhance optical enantios-
electivity with a 11× enhancement (g/gCPL) by using a
standing wave chiral field (SWCF) instead of the typi-
cal circularly polarized light (CPL) [30, 31]. Their pro-
posal was ingenious in its simplicity and creativity. They
simply placed a mirror with reflectivity R to reflect the
CPL, creating a standing wave instead. At the electric
field minimum they placed their chiral sample, at which
point their theory showed an enhancement in the dissym-
metry factor (See Figure 10). To measure gCPL, they
used a sample without a mirror, and measured the dif-
ferential absorption for LCP and RCP light. To mea-
sure the enhanced g, they used a sample with a mirror,
and measured the differential absorption of the ‘left’- and
‘right’-handed standing waves, created by an LCP inci-
dent light or an RCP incident light. Because R < 1,
these two SWCFs are either more left-handed or more
right-handed than the other, thereby providing a non-
zero dissymmetry factor.

The original theory by Tang and Cohen showed an infi-
nite enhancement for a perfectly reflecting mirror, which
was corrected by Choi and Cho by including the omitted
magnetic field component properly [32].

g

gCPL
' cC

2nω [〈Ue〉t + γ 〈Ub〉t]

⇒ 1−R
(1 +R)(1 + γ) + 2

√
R(γ − 1) cos(2kz)

, (9)

where C is the ‘optical chirality’ Tang and Cohen used
to quantify the chirality of the field, R is the reflectiv-
ity, ω is the angular frequency, n is the average index
of refraction of the material, 〈Ue〉t and 〈Ub〉t are the
time-averaged electric and magnetic field energy densi-
ties, respectively. z is the position along the propaga-
tion axis of the field, k is its wave vector, and finally
γ ∝ (magnetic susceptibility)/(electric polarizability) ≈
10−6 − 10−4 and hence is a property of the sample used.
The right-hand side of the right-arrow is for the SWCF
case specifically, while the left-side is general. The cor-
rected formula showed that there is an enhancement
when the electric field is at a minimum (cos(2kz) = 1).
At this nodal region, the enhancement has the general
shape shown in Figure 11 as a function of R. The chi-
ral sample used fixes the shape, and thus determines
the maximum enhancement that can be achieved, which
ranges from 15× to 500× for realistic samples. Al-
though Tang and Cohen originally devised their ‘super-
chiral’ field in an attempt to increase the chiral nature
of their newly engineered field, the optical chirality C
that quantifies this is actually constant in space and time
for the SWCF. The enhancement they observed comes
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FIG. 10. Tang and Cohen experimental setup [31]. Exper-
imental setup for enhancement using a standing-wave chiral
field (SWCF). Two samples used, one with mirror coating,
and one without, to measure g, gCPL respectively. The thin
sample has both a chiral and an achiral layer on a 170µm thick
glass coverslip. Laser light was polarized to avoid distortion
from the dichroic. The variable retarder converted the lin-
early polarized light alternately into left- and right-circularly
polarized light. Fluorescence was imaged on a charge-coupled
device camera (CCD), after being separated from excitation
light by the dichroic mirror and a filter (not shown).
(Inset) Electric fields of SWCF compared to circularly po-
larized light (CPL) interacting with the thin sample chi-
ral/achiral layer (‘sample layer’), obtained from the exper-
imental values (R=0.72, 543.5 nm wavelength). The CPL
(red) is left-CPL, traveling in the −z direction. When re-
flected by the mirror, a standing wave (SWCF; blue) is cre-
ated. The CPL shown is for a fixed time, but the SWCF
shown is a sum of eight 1/8 periods. The fields shown are
over a propagation distance of ∼ 1.2µm(z1 = 1µm). This il-
lustrates that the chiral/achiral sample layer can spatially fit
inside a nodal electric field region for the SWCF. (The mirror
and sample layer were 19 nm, 10 nm thick, respectively)

from placing the chiral sample at the electric field node,
and is maximized when [〈Ue〉t + γ 〈Ub〉t] is minimized in
the denominator of equation (9), much like when the
weak value is maximized by finding a nearly zero de-
nominator term in equation (1). For the ‘superchiral’
field case, due to conservation of energy, the denomina-
tor never becomes zero but achieves its minimum when
〈Ue〉t ∼ γ 〈Ub〉t [32]. This condition is close to the nodal
electric field region (〈Ue〉t = 0) since γ is so small. This
implies that the signal obtained is also very small, simi-
lar to weak values. On another note, one could search
for samples with smaller γ to obtain higher enhance-
ments, but the signal decreases faster than the increase
in enhancement, making this search not as fruitful as one
would hope.

FIG. 11. Dissymmetry factor enhancement of a SWCF field
over CPL fields for [31], as a function of the reflectivity R
of the mirror used. Plot is for the chiral sample that was
used, at the electric field node, and for γ = 0.00065 fit to the
experimental data (points with error bars).

Quasi-null Ellipsometric Chiroptical Spectroscopy

Published in 1985, the Kliger group (Lewis et al. [33])
demonstrated a method to measure protein dynamics
through measurement of circular dichroism on a nanosec-
ond time scale. Their method allowed time resolution of
CD to be enhanced by a factor of 106. They took ad-
vantage of the fact that a chiral sample will change the
ellipticity of elliptically polarized light. First they sent
a linearly polarized light and converted it to either left-
elliptically polarized (LEP) or right-elliptically polarized
(REP) light. They then measured the absorption of a
chiral sample from the (LEP) light or the (REP) light.
The differential CD signal was obtained by passing it
through a linear polarizer that was perpendicular to the
original linear polarizer. This method was later called
‘quasi-null ellipsometric chiroptical spectroscopy.’ It al-
lowed for a 103 enhancement of the dissymmetry factor,
compared to standard measurements, which corresponds
to the same increase for the SNR. Since time resolution
goes as the square of the SNR, this then corresponds to
the 106 enhancement.

In 2009, Helbing and Bonmarin [34], Rhee and the Cho
group [35] adapted Kliger’s technique to measure both
the vibrational CD and ORD signals. Vibrational sig-
nals are much smaller than that for the electronic spectra,
with dissymmetry factors being (10−6− 10−4) compared
to (10−3−10−2) for the electronic transition signals. The
Cho group combined heterodyned detection with Kliger’s
method, and with femtosecond pulses to probe the chi-
rality of the sample. Conventional vibrational CD spec-
troscopy requires hours of data collection because of the
small signal. However, Cho’s technique was able to col-
lect the chiral data almost instantaneously, opening up
the possibility of the probing of molecular and biological
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dynamics efficiently. Later, the Cho group showed the
ability to conduct these measurements on a single-shot
basis [36, 37].

Figure 12 shows the experimental setup for the 2009
Rhee and Cho work. The pulse is initially linearly polar-
ized before propagating through the chiral sample. The
chiral sample changes each circular polarized component
into elliptically polarized lights by both optical rotation
and differential absorption (through CD). The elliptically
polarized light is then filtered through an orthogonal lin-
ear polarizer which selects the chiral signal, at the ex-
pense of a smaller final signal. This is then combined
with a heteroduned signal separated from the original
beam.

FIG. 12. (a) Coherent pulse goes through a chiral sample.
LP1 and LP2 are orthogonal linear polarizers. The outgoing
left- and right-handed fields are out of phase with each other.
(b) Sketch of the setup for Fourier transform spectral interfer-
ometry. BS are beamsplitters that separate and recombine the
probe pulse and the heterodyned pulse. LP’s are linear polar-
izers, and the final combined field is dispersed by a monochro-
mator (MC) and detected by detector D. (From [35])

The enhancements of these small signals can be de-
scribed by the AAV theory for weak value measure-
ment [38]. Thus, Kliger’s work provides an example of a
‘weak value’ experiment that was performed prior to the
AAV formalism, and described classically.

CONCLUSION

An overview of the weak value measurement theory by
AAV was provided, along with significant experiments
that have verified some of their conclusions. These theory
and experiments have opened up new insights into high-

precision measurements, have opened up new measure-
ment techniques previously thought impossible in quan-
tum mechanics, and continues to surprise many with con-
troversial and interesting viewpoints. A few selected en-
hancement techniques used in the field of chemistry for
chiral signals that are small have been introduced as well.
We can see that these techniques in chemistry have sim-
ilarities with weak value measurements, some being that
the enhancement is for small signals, and is obtained by
throwing away most of the signal. In fact, the quasi-
null ellipsometric chiroptical spectroscopy developed by
Kliger’s group in 1985 can be written in the weak value
formalism. We can look forward to developments in the
future for improved measurements in both physics and
chemistry as scientists from both share and collaborate
on ideas that have served both fields so well. Some have
already begun connecting chiral fields and weak value
measurments [14, 39], and a minireview containing ex-
periments described here will be published in Chemical
Science by the author and collaborators [7].

The author would like to thank Professor John How-
ell, Professor Minhaeng Cho, Dr. Hanju Rhee, and Dr.
David Starling for their insights and discussions that
helped to formulate this paper. The author was sup-
ported by an IGERT Fellowship from the National Sci-
ence Foundation. Many figures were taken from the pub-
lished sources, as noted, since this paper is intended for
academic purposes.
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